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What is Frequent 
Itemset Mining?
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Finding Co-occurrences
• Frequent Itemset Mining (FIM) helps us find items 

that often appear together in a dataset.

• For example, FIM may discover that customers who 
buy coffee also frequently buy milk. 

• Key Terms 
o Itemset: A collection of items.
o Frequent Itemset: A collection of items that are 

commonly found together.
o Minimum Support: The cutoff point that 

determines if an itemset is frequent.
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Uses for Frequent 
Itemset Mining

Market Basket Analysis
Understanding customer buying habits 
(e.g., products frequently purchased together).

Medical Diagnosis
Identifying co-occurring symptoms or conditions.

Fraud Detection
Detecting unusual combinations of transactions or 
activities.
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A Refresher 
on tidyclust.
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tidyclust Workflow
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• tidyclust is a set of tools in R that helps 
find patterns in data without pre-defined 
labels (unsupervised learning).

• The goal of tidyclust is to establish a 
consistent and reproducible workflow.

• A user can: 
o Specify a model
o Fit a model
o Predict with a model

all using a standardized syntax.

fi_spec <- freq_itemsets(
min_support = 0.05,
mining_method = “apriori”,
) |>
set_engine("arules")

fi_spec_fit <- fi_spec |>
fit(~., data = groceries)

fi_spec_fit |>
predict(new_groceries)



Clustering 
Frequent Itemsets.
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Clustering
• Group similar data points (rows) together.

Clustering with FIM
• Groups similar items (columns) together.
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beer milk bread diapers eggs
0 1 1 0 0
1 0 1 1 1
1 1 0 1 0
1 1 1 1 0
0 1 1 1 0

sex island
bill 

length bill depth
body 
mass

male Torgersen 39.1 18.7 3750
female Torgersen 39.5 17.4 3800
female Torgersen 40.3 18 3250
female Torgersen 36.7 19.3 3450
male Torgersen 36.8 20.6 3650

• Finds natural groupings based on data 
characteristics.

• Groups items based on co-occurrence in 
transactions.



Finding Frequent Itemsets
beer milk bread diapers eggs
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item support

beer 0.6

milk 0.8

bread 0.8

diapers 0.8

eggs 0.2

Minimum Support: 0.5

Support(X) = 
Number of transactions containing itemset X

Total number of transactions

itemset support

{beer, bread} 0.4

{beer, diapers} 0.6

{beer, milk} 0.4

{bread, diapers} 0.6

{bread, milk} 0.6

{diapers, milk} 0.6

itemset support

{bread, diapers, milk} 0.4

Apriori Principle: If an 
itemset is frequent, 
then so are all its 
subsets.
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Clustering Frequent 
Itemsets

Find Relevant Frequent Itemsets
(frequent itemsets milk belongs to)

{milk}
{bread, milk}
{diapers, milk}

Select the "Best" Frequent Itemset

Prefer larger itemsets
Among same-size, prefer more frequent

{bread, milk}

Output Cluster 

{bread, milk}

Handling Outliers

Items not in any frequent 
itemset are outliers.

For each item



Predicting with 
Frequent Itemsets.
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Predicting with 
Frequent Itemsets
Given a partial set of items, for each missing 
item:
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beer milk bread diapers eggs

1 NA 0 1 0

itemset support

milk 0.8

bread 0.8

diapers 0.8

beer 0.6

{beer, diapers} 0.6

{bread, diapers} 0.6

{bread, milk} 0.6

{diapers, milk} 0.6

itemset support confidence

{diapers, milk} 0.6 0.75

Confidence(X   Y) = 
Support(X or Y)

Support(observed items in X)

milk

0.75

2.   Calculate Confidence: The likelihood of the 
missing item appearing,   given the observed 
items.

3.   Predict: Average these likelihoods.

1.   Find Relevant Frequent Itemsets: Find 
frequent itemsets that contain the missing 
item and at least one observed item.



k-means Output FIM Output
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.pred_cluster
Cluster_1

Cluster_1

Cluster_2

Cluster_3

Cluster_2

.pred_cluster
<df [5 x 3]>
<df [5 x 3]>
<df [5 x 3]>
<df [5 x 3]>
<df [5x 3]>

item .obs_item .pred_item
beer 0 NA

milk NA 1 (0.75)

bread 1 NA

diapers 0 NA

eggs 0 NA



Future Additions.
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Future Directions

Parameter Tuning
Automate minimum support tuning with data-
driven ranges.

Cross Validation
Implement item-stratified cross-validation for 
robust model evaluation.

Enhance Prediction
Test different confidence weight metrics.
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Tuning Minimum Support
• The optimal minimum support value varies 

depending on the characteristics of the dataset.
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From Fundamental basket size patterns and their relation to retailer 
performance, Martin et. al. 2009

• I propose

1. Calculate the mean support of all 1-itemsets:

𝜇 =
1

n
෍

𝑛

𝑠𝑢𝑝𝑝𝑜𝑟𝑡 𝑖𝑡𝑒𝑚𝑖

2. Create a confidence-interval-like range around 𝝁
using the standard deviation 𝜎:

𝜇 −
𝜎

2
, 𝜇 + 𝜎

clipping the bounds at [0, 1] to ensure valid support  
values. 

The range is asymmetric since transactional 
datasets tend to have a right skewed support 
distribution.



Putting 
Everything 
Together.
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Functions!

freq_itemsets():
.freq_itemsets_fit_arules()

fit():
extract_cluster_assignment.itemsets()
item_assignment_tibble_w_outliers()

predict():
itemsets_predict_helper()
.freq_itemsets_predict_raw_arules()
.freq_itemsets_predict_arules()
extract_predictions()
augment_itemset_predict()

Misc.():
extract_fit_summary_items()
tunable.freq_itemsets()
random_na_with_truth()
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Thank you!
(Especially Dr. Bodwin!)
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